ARGYLL AND BUTE COUNCIL

Oban Lorn and the Isles Area Committee.

DEVELOPMENT AND INFRASTRUCTURE

DATE: 11 April 2012

TITLE: Ganavan Sands- impact of storm events during December 2011 and January 2012

1. SUMMARY

The sand in the upper reaches of the beach at Ganavan Sands was affected by a number of storm events between early December 2011 and January 2012. The outcome of these storm events was that the sand from the upper reaches of the beach was removed by extreme wave action exposing the shingle and cobble

foundation.

A number of site visits to ascertain the effects of the storms were carried out commencing on 19th January 2012 to photograph and assess what we needed to survey and to determine the right time in terms of the tides. A second visit to carry out a field survey at low tide took place on 26th January 2012.

We contacted Stewart Angus, Coastal Ecologist for SNH and Mark Williams, Inshore Hydrographer for SEPA for expert advice, they said that *'removal and deposition of sand on* beaches is a natural process and it is possible that the beach will eventually recover' and 'to interfere with the natural process is considered a waste of resources and could do more damage to the integrity of the beach in the long term'.

A third visit was made to the Ganavan Sands on 8th March 2012 to photograph any changes.

The images in **Appendix 1** show that at least 2/3's of the sand has returned.

2. **RECOMMENDATION**

It is recommended that Members:

- (i) Note the content of the report; and
- (ii) Agree to this report

3. BACKGROUND

Ganavan Beach is a popular destination with locals and visitors. It is well used all year round for walking, recreation and swimming.

Recent storm events exposed the underlying shingle/cobble habitat on the upper shore, this attracted front page press in the Oban Times followed by numerous offers of assistance to return the sand.

Shingle and cobble are characteristic of this type of beach as these elements act as an extremely important foundation. They support the upper sandy layer and assist with withdrawing wave energy, therefore protecting the beach and limiting erosion of coastal protection. The map **Appendix 2** is taken from a Nature Conservancy Council report in 1972 which shows the distribution of sand, cobble and shingle in an almost identical layout following the winter storms

Options 4.

Should anything be done to try and restore Ganavan beach? The table below summarises the potential implications that should be considered in deciding whether any action is necessary or to try and help restore Ganavan beach or whether the beach should be left to recover naturally.

Action	Implications	Consents required	Recommendation
Remove sand from the	Removing sand from the lower	Marine Licence	Not a viable option as
lower shore and place on	shore will increase overall	Crown Estate	would increase the risk of
upper shore	wave energy on the lower and	Consent	erosion of sand on the
	upper shore and therefore		upper shore of bay.
	increase the risk of removal of		
	sand from the beach.		
Remove cobble/shingle	This habitat absorbs wave	Marine Licence	Not a viable option as
from upper shore	energy and stabilises the	Crown Estate	likely to result in
	whole beach system. Removal	Consent	deterioration of beach
	would lead to instability of the		and coastal defences.
	shore, greater removal of sand		
	and increased risk of erosion		
	to coastal defences.		
Remove seaweed from	Seaweed is a natural part of	Might need Marine	Not recommended as
upper shore	the beach system and actively	Licence	removal has potential to
	traps sand on the upper shore,	Crown Estate	reduce the ability of the
	promoting a natural	Consent	upper shore to retain and
	accumulation of sand.		accumulate sand.
	Eventually seaweed can		
	become covered in sand which		
	traps nutrients and moisture		
	under the sand and promotes		
	the growth of coastal plants		
	which in turn stabilises the		
	sand.		
Bring in sand from	Risk of bringing in other	Marine Licence	Not recommended as an
elsewhere	species that are not wanted or	Crown Estate	expensive option and not
	not native. Most supplies of	Consent	environmentally friendly
	quarried sand would be		in terms of biodiversity.
	granite which is likely to be		
	much coarser and more		
	angular which would have		
	implications for animals living		
	in the sand. Granite sand		
	would be more acidic that		
	Ganavan sand which would		
	Increase risk of weed		
	problems on upper shore		
	Potentially less damaging to		
	beach dynamics than moving		
	salid or removing		
	couple/simgle but still hot		
	ontion		
Leave the beach to	Risk of recovery taking a long	No consents needed	Rest option No.
recover naturally	time or not happening at all	no consents needed.	environmental impacts or
			financial costs

5. CONCLUSION-

Given time as has been clearly demonstrated by the images in Appendix 1, the sand at Ganavan Sands is returning, how long it will take to cover the remaining Cobbles and Shingle remains with the natural processes that this stretch of coastline is subject to.

6. IMPLICATIONS-

The implications of interfering in the natural process will come with a cost in terms of time, licensing, suitable sand, machinery and labour. This is not recommended as the council could set a precedent to react without investigating whether any action would interfere with the natural recovery, is required or sustainable.

,	
Legal:	None.
Policy:	None
Personnel:	None.
Financial:	None
Equal Opportunities:	None.

For further information contact:

Marina Curran-Colthart- Local Biodiversity Officer, Tel. 01631 569191. Email <u>marina.curran-colthart@argyll-bute.gov.uk</u>

Appendix 1. Photographs showing that the sand is returning.

Ganavan Sands 26 January 2012 and 08 March 2012

Image take 26 January 2012

26January 2012

26 January 2012

26 January 2012

08 March 2012

08 March 2012

08 March 2012

08 March 2012.

Images by: Marina Curran-Colthart Local Biodiversity Officer.

Appendix 2.

Swells generated in the open water to the south of Mull are readily channelled to the coast through the Firth of Lorne. Considerable wave energy, therefore, reaches these beaches and enables the movement of sandy sediments between beach and offshore. There appears to be sufficient sand in the offshore reservoir, derived largely from the earlier marine erosion of rock cliffs and raised shoreline deposits, to fulfil the present requirements of the beaches.

None of the five pockets is formed entirely of sand; it either occurs as an admixture with coarser sediments or in distinct bands paralleling the shoreline. At Ganavan, sand is the predominant material occurring on a wide low angle beach in the form of surface ripples with a great deal of standing water at low-tide and on the upper beach over a width of 20m. In the former sector the sand is extremely stable. It is separated from the upper beach/backshore sand by two further sectors – the lower one a highly stable low angle beach of lag cobbles and blocks with large masses of seaweed and an upper sector of mobile gravels and small cobbles with a much steeper slope and a width of 32m. These coarser sediments are largely derived from the conglomerate bedrock and the raised shoreline deposits and act as a barrier to wave attack of the upper sandy sector. There is a marked contrast in the characteristics of the two sand sectors. Although both have a light brownish grey colour, the lower one is considerably finer (averaging 0.2mm), whilst the upper one is coarser (0.3mm) and less well sorted. The latter reaches a depth of >0.5m over the coarser sediments which form the beach base, has a low gradient and in parts has been colonised by anthropic vegetation which has enabled small embryo dunes to form. This sector is, therefore, the least stable and subject to the greatest anthropic pressure, but because it is protected by the coarser sediments down-beach has remained relatively stable.